Evolution of speckle during spinodal decomposition.
نویسندگان
چکیده
Time-dependent properties of the speckled intensity patterns created by scattering coherent radiation from materials undergoing spinodal decomposition are investigated by numerical integration of the Cahn-Hilliard-Cook equation. For binary systems which obey a local conservation law, the characteristic domain size is known to grow in time tau as R=[Btau](n) with n=1/3, where B is a constant. The intensities of individual speckles are found to be nonstationary, persistent time series. The two-time intensity covariance at wave vector k can be collapsed onto a scaling function Cov(deltat,t), where deltat=k(1/n)B(tau(2)-tau(1)) and t=k(1/n)B(tau(1)+tau(2))/2. Both analytically and numerically, the covariance is found to depend on deltat only through deltat/t in the small-t limit and deltat/t (1-n) in the large-t limit, consistent with a simple theory of moving interfaces that applies to any universality class described by a scalar order parameter. The speckle-intensity covariance is numerically demonstrated to be equal to the square of the two-time structure factor of the scattering material, for which an analytic scaling function is obtained for large t. In addition, the two-time, two-point order-parameter correlation function is found to scale as C(r/(B(n)sqaureroot[tau1(2n)+tau2(2n)]),tau1/tau2), even for quite large distances r. The asymptotic power-law exponent for the autocorrelation function is found to be lambda approximately 4.47, violating an upper bound conjectured by Fisher and Huse.
منابع مشابه
The Microstructural Evolution of the Coexistence of Spinodal Decomposition and Ordering in Fe-23al Alloy during Aging
Article history: Received: 28.11.2012. Received in revised form: 04.01.2013. Accepted: 15.01.2013. The microstructural evolution of the coexistence of spinodal decomposition and ordering is characterized by metallographic microscopy and transmission electron microscopy in aged Fe-23Al (i.e. Fe-23at%Al) alloy. This paper discusses a phase transition mechanism of the microstructure evolution. The...
متن کاملDoes coarsening begin during the initial stages of spinodal decomposition?
The initial stages of spinodal decomposition were studied by subjecting a critical blend of model polyolefins to a pressure quench and monitoring the evolution by time-resolved small angle neutron scattering. Contrary to the predictions of the widely accepted Cahn-Hilliard-Cook theory, we demonstrate that coarsening of the phase-separated structure begins immediately after the quench and occurs...
متن کاملDirect observation of spinodal decomposition phenomena in InAlN alloys during in-situ STEM heating
The spinodal decomposition and thermal stability of thin In0.72Al0.28N layers and In0.72Al0.28N/AlN superlattices with AlN(0001) templates on Al2O3(0001) substrates was investigated by in-situ heating up to 900 °C. The thermally activated structural and chemical evolution was investigated in both plan-view and cross-sectional geometries by scanning transmission electron microscopy in combinatio...
متن کاملFormation of Poly(vinylidene fluoride) Nanofibers Part II: the elaboration of incompatibility in the electrospinning of its solutions
Poly(vinylidene fluoride) (PVDF) fibers with two molecular weights were prepared via electrospinning process. In this process, the concentration of spinning depended drastically on the gelation process. Also, it was experimentally smaller than obtained concentration in the solution entanglement number approach (SENA). Proof of this incompatibility was explained by the properties of PVDF a...
متن کاملSpinodal decomposition in liquid crystalline materials
The theory of phase separation m a liquid crystal by spinodal decompoSit1on is developed The time evolution of two coupled parameters, the volume concentration (or mole fraction), and the orientational order parameter is calculated The conditions for penodic fluctuations are gJven and the structure factor for spinodal decomposition is studied
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
دوره 60 5 Pt A شماره
صفحات -
تاریخ انتشار 1999